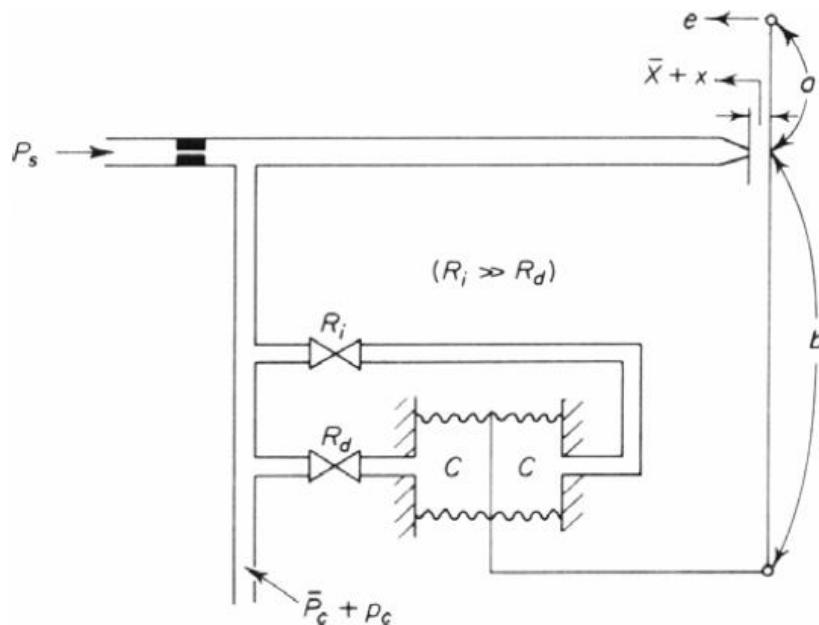


CITY COLLEGE

CITY UNIVERSITY OF NEW YORK



HOMEWORK #8

PNEUMATIC PID CONTROLLER

ME 411: System Modeling Analysis and Control

Fall 2010

Prof. B. Liaw

By: Pradip Thapa

November 24, 2010

a) Governing equation and transfer function:

I. The pneumatic nozzle-flapper amplifier:

A schematic diagram of a pneumatic nozzle-flapper is shown in figure 1.

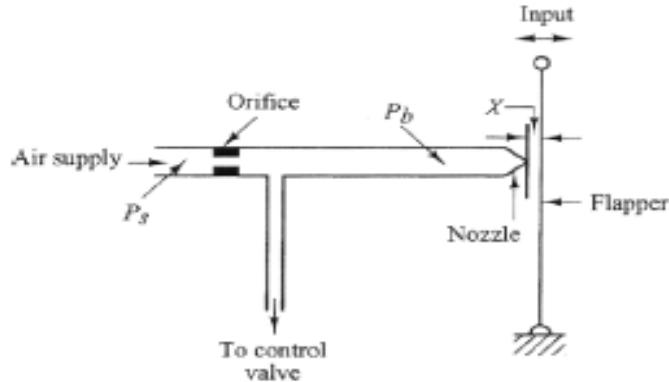


Figure 1: Pneumatic Nozzle-Flapper Amplifier

In operating this system, the flapper is positioned against the nozzle opening. The nozzle back pressure P_b is controlled by the nozzle-flapper distance X . As the flapper approaches the nozzle, the opposition to the flow of air through the nozzle increases, with the result that the nozzle pressure P_b increases.

Assuming that the relationship between the variation in the nozzle back pressure $p_b(t)$ and the variation in the nozzle-flapper distance $x(t)$ is linear, we have

$$p_b(t) = K \cdot x(t)$$

where K is positive constant.

Since the smooth pipes with back and control pressures are connected directly, we have:

$$p_b(t) = p_c(t) = K \cdot x(t)$$

By the Laplace transformation

$$P_b(s) = P_c(s) = K \cdot X(s)$$

Again, if $p_i(t)$ and $p_o(t)$ are considered the input and output, respectively, then for the small values of $p_i(t)$ and $p_o(t)$, the resistance R given by, where

$$R = \frac{p_i(t) - p_o(t)}{q} \rightarrow q = \frac{p_i(t) - p_o(t)}{R}$$

And the capacitance C is given by

$$C = \frac{dm}{dq}$$

Since, the pressure change dp_o times the capacitance C is also equal to the gas added to the vessel during dt seconds,

$$\begin{aligned} Cdp_o &= qdt \\ C \frac{dp_o}{dt} &= q \\ C \frac{dp_o}{dt} &= \frac{p_i(t) - p_o(t)}{R} \\ RC \frac{dp_o}{dt} &= p_i(t) - p_o(t) \end{aligned}$$

By analogy, for pneumatic resistance R_i and R_d of restriction valves

$$R_i C \frac{dp_i}{dt} = p_c(t) - p_i(t)$$

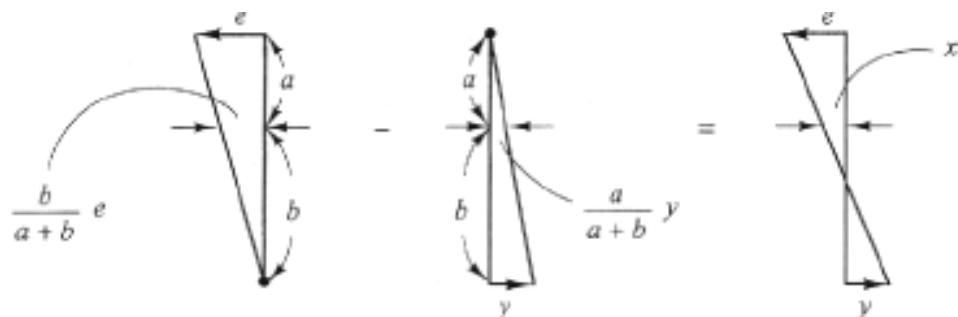
$$R_d C \frac{dp_d}{dt} = p_c(t) - p_d(t)$$

Therefore the transfer function of the subsystem is

$$\frac{P_i(s)}{P_c(s)} = \frac{1}{R_i Cs + 1}$$

$$\frac{P_d(s)}{P_c(s)} = \frac{1}{R_d Cs + 1}$$

As show in the figure below, we can consider such movement separately and add up the results of the two movements into one displacement, thus for the flapper movement, we have



$$x(t) = \frac{b}{a+b} e(t) - \frac{a}{a+b} y(t)$$

$$y(t) = \frac{b}{a} e(t) - \frac{a+b}{a} x(t)$$

Assuming that the flapper acts like a spring and the following equation holds true,

$$A_b * (p_d(t) - p_i(t)) = by(t)$$

Where A is the effective area of bellows and K_b is the equivalent spring constant.

$$A_b * (p_d(t) - p_i(t)) = K_b \left(\frac{b}{a} e(t) - \frac{a+b}{a} x(t) \right)$$

By Laplace transformation

$$P_d(s) - P_i(s) = \frac{K_b}{A_b} \left(\frac{b}{a} E(s) - \frac{a+b}{a} X(s) \right)$$

Dividing both side by $P_c(s)$

$$\frac{1}{R_d Cs + 1} - \frac{1}{R_i Cs + 1} = \frac{K_b b}{A_b a} \frac{E(s)}{P_c(s)} - \frac{K_b}{A_b} \frac{a+b}{a} \frac{X(s)}{P_c(s)}$$

$$\frac{K_b b}{Aa} \frac{E(s)}{P_c(s)} = \left(\frac{1}{R_d Cs + 1} - \frac{1}{R_i Cs + 1} + \frac{K_b}{A_b} \frac{a+b}{a} \frac{X(s)}{P_c(s)} \right)$$

$$\frac{P_c(s)}{E(s)} = \frac{1}{\frac{A_b a}{K_b b} \left(\frac{1}{R_d Cs + 1} - \frac{1}{R_i Cs + 1} + \frac{K_b}{A_b} \frac{a+b}{a} \frac{1}{K} \right)}$$

$$\frac{P_c(s)}{E(s)} = \frac{1}{\left(\frac{A_b a}{K_b b} \frac{1}{R_d Cs + 1} - \frac{A_b a}{K_b b} \frac{1}{R_i Cs + 1} + \frac{a+b}{b} \frac{1}{K} \right)}$$

$$\frac{P_c(s)}{E(s)} = \frac{1}{\frac{a+b}{bK} \left(\frac{K}{a+b} \frac{A_b a}{K_b} \frac{1}{R_d Cs + 1} - \frac{K}{a+b} \frac{A_b a}{K_b} \frac{1}{R_i Cs + 1} + 1 \right)}$$

$$\frac{P_c(s)}{E(s)} = \frac{1}{\frac{a+b}{bK} \left(\frac{K}{a+b} \frac{A_b a}{K_b} \frac{1}{R_d Cs + 1} - \frac{K}{a+b} \frac{A_b a}{K_b} \frac{1}{R_i Cs + 1} + 1 \right)}$$

$$\frac{P_c(s)}{E(s)} = \frac{b}{a+b} \frac{K}{1 + K \left(\frac{a}{a+b} \frac{A_b}{K_b} \right) \left(\frac{1}{R_d Cs + 1} - \frac{1}{R_i Cs + 1} \right)}$$

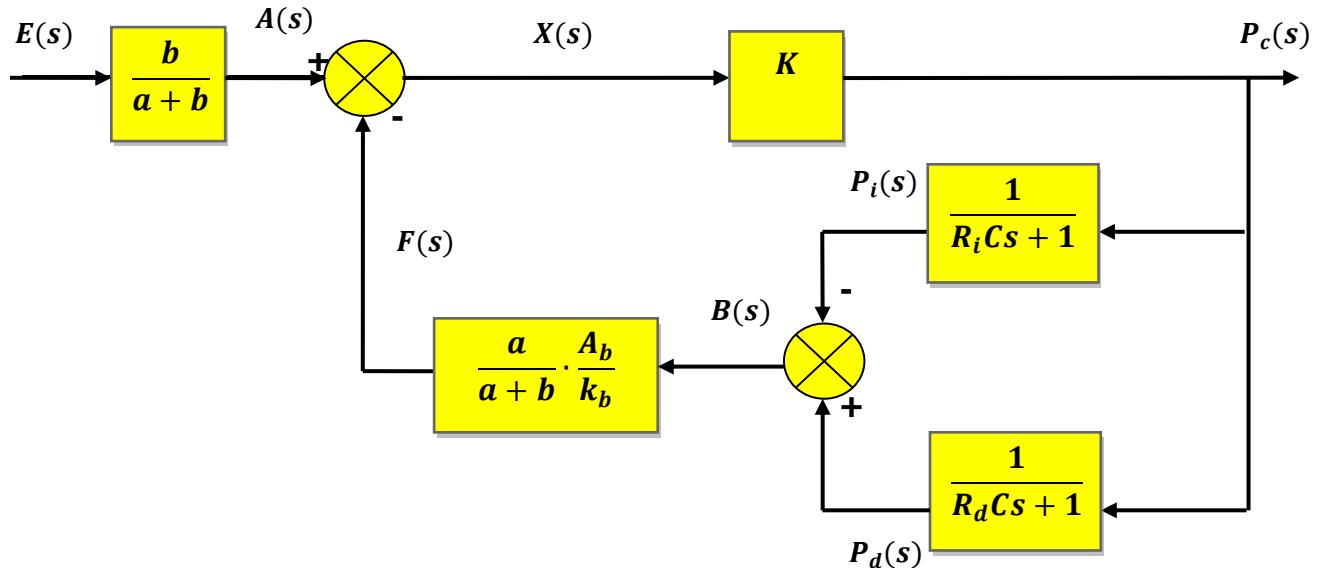
b) Block Diagram:

With the below block diagram the equation we found are:

$$A(s) = \frac{b}{a+b} E(s) \quad P_i(s) = \frac{1}{R_i Cs + 1} P_c(s) \quad X(s) = A(s) - F(s)$$

$$P_c(s) = KX(s) \quad P_d(s) = \frac{1}{R_d Cs + 1} P_c(s) \quad F(s) = \left(\frac{a}{a+b} \cdot \frac{A_b}{k_b} \right) B(s)$$

$$B(s) = P_d(s) - P_i(s)$$



$$X(s) = A(s) - F(s)$$

$$\frac{P_c(s)}{K} = \frac{b}{a+b} E(s) - \left(\frac{a}{a+b} \cdot \frac{A_b}{k_b} \right) B(s)$$

$$\frac{P_c(s)}{K} = \frac{b}{a+b} E(s) - \left(\frac{a}{a+b} \cdot \frac{A_b}{k_b} \right) (P_d(s) - P_i(s))$$

$$\frac{P_c(s)}{K} = \frac{b}{a+b} E(s) - \left(\frac{a}{a+b} \cdot \frac{A_b}{k_b} \right) \left(\frac{1}{R_d Cs + 1} P_c(s) - \frac{1}{R_i Cs + 1} P_c(s) \right)$$

$$\frac{b}{a+b} \frac{E(s)}{P_c(s)} = \frac{1}{K} + \left(\frac{a}{a+b} \cdot \frac{A_b}{k_b} \right) \left(\frac{1}{R_d Cs + 1} - \frac{1}{R_i Cs + 1} \right)$$

$$\frac{E(s)}{P_c(s)} = \frac{(a+b)}{b} \frac{1}{K} + \frac{(a+b)}{b} \left(\frac{a}{a+b} \cdot \frac{A_b}{k_b} \right) \left(\frac{1}{R_d Cs + 1} - \frac{1}{R_i Cs + 1} \right)$$

$$\frac{P_c(s)}{E(s)} = \frac{1}{\frac{(a+b)}{b} \frac{1}{K} + \frac{(a+b)}{b} \left(\frac{a}{a+b} \cdot \frac{A_b}{k_b} \right) \left(\frac{1}{R_d Cs + 1} - \frac{1}{R_i Cs + 1} \right)}$$

$$\frac{P_c(s)}{E(s)} = \frac{b}{a+b} \frac{K}{K \frac{1}{K} + K \left(\frac{a}{a+b} \cdot \frac{A_b}{k_b} \right) \left(\frac{1}{R_d Cs + 1} - \frac{1}{R_i Cs + 1} \right)}$$

$$\frac{P_c(s)}{E(s)} = \frac{b}{a+b} \frac{K}{1 + K \left(\frac{a}{a+b} \cdot \frac{A_b}{k_b} \right) \left(\frac{1}{R_d Cs + 1} - \frac{1}{R_i Cs + 1} \right)}$$

c) PID Control parameters:

Assume that under normal operating conditions:

$$\text{Loop gain: } |G(s) \cdot H(s)| = \left| 1 + K \left(\frac{a}{a+b} \cdot \frac{A_b}{k_b} \right) \left(\frac{1}{R_d Cs + 1} - \frac{1}{R_i Cs + 1} \right) \right| \gg 1$$

And $R_i \gg R_d$

Therefore mentioned transfer function can then be used to approximate a PID controller, i.e.,

$$G_c(s) = \frac{P_c(s)}{E(s)} = \begin{cases} K_p \left(1 + \frac{1}{T_I s} + T_D s \right) \\ K_p + \frac{K_I}{s} + K_D s \end{cases}$$

Then, We have

$$\begin{aligned} \frac{P_c(s)}{E(s)} &= \frac{P_c(s)}{E(s)} = \frac{b}{a+b} \frac{K}{K \left(\frac{a}{a+b} \cdot \frac{A_b}{k_b} \right) \left(\frac{1}{R_d Cs + 1} - \frac{1}{R_i Cs + 1} \right)} \\ &= \frac{b}{\left(\frac{aA_b}{k_b} \right) \left(\frac{1}{R_d Cs + 1} - \frac{1}{R_i Cs + 1} \right)} \\ &= \frac{bk_b(R_i Cs + 1)(R_d Cs + 1)}{aA_b(R_i Cs - R_d Cs)} \\ &= \frac{bk_b(R_i Cs + 1)(R_d Cs + 1)}{aA_b(R_i Cs - R_d Cs)} \\ &= \frac{bk_b(R_i R_d C^2 s^2 + R_i Cs + R_d Cs + 1)}{aA_b(R_i Cs - R_d Cs)} \\ &= \frac{bk_b(R_i R_d C^2 s^2 + R_i Cs + 1)}{aA_b(R_i Cs)} \end{aligned}$$

$$\begin{aligned}
&= \frac{bk_b}{aA_b} \frac{R_i R_d C^2 s^2 + R_i C s + 1}{R_i C s} \\
&= \frac{bk_b}{aA_b} \left(1 + \frac{1}{R_i C s} + R_d C s \right)
\end{aligned}$$

Therefore by analogy

The PID control parameters are:

$$\text{Proportional gain } (K_p) = \frac{bk_b}{aA_b}$$

$$\text{Integral Time } (T_I) = \frac{1}{R_i C}$$

$$\text{Integral gain } (K_I) = \frac{K_p}{T_I} = \frac{bk_b}{aA_b R_i C}$$

$$\text{Derivative Time } (T_D) = R_d C$$

$$\text{Derivative gain } (K_D) = K_p * T_D = \frac{bk_b}{aA_b} R_d C$$